KONTROLLE Nr. 56

der math. Leistungsfähigkeit unter Streß

Bearbeitungszeit: 45 Minuten

Zugelassene Hilfsmittel: Taschenrechner, Tafelwerk

Max. 31 Punkte erreichbar

16 - 22 Punkte ≘ Note 4

23 - 26 Punkte ≘ Note 3

27 - 29 Punkte ≘ Note 2

30-31 Punkte ≘ Note 1

Aufgabe 1 15+5 Punkte

Gegeben ist die Funktion f mit

$$f(x) = -\frac{1}{9}x^4 + 2x^2, \quad x \in \mathbb{R}.$$

Ihr Graph wird mit K_f bezeichnet.

- a) Ermitteln Sie die gemeinsamen Punkte von K_f und der x-Achse sowie die Extrempunkte von K_f.
 Zeichnen Sie K_f für x ∈ [-4,4;4,5].
- b) Ein zur y-Achse symmetrisches gleichschenkliges Dreieck hat seine Spitze in C(0|12). Die Ecken A und B liegen auf K_f im Intervall [-3;3]. Dieses Dreieck rotiert um die y-Achse und erzeugt dabei einen Drehkörper.
 Wie muß man A und B wählen, damit der Drehkörper einen maximalen Rauminhalt hat?
 Wie groß ist dieser?
- c) Prüfen Sie, ob für diese Wahl von A und B das Dreieck ABC maximalen Flächeninhalt hat.

Aufgabe 2 6 Punkte

Für jedes $t \in \mathbb{R}^+$ ist eine Gerade mit der Gleichung

$$g_t(x) = -3tx + 12t + 4, \quad x \in \mathbb{R}$$

gegeben. Diese Gerade schneidet die Koordinatenachsen in den Punkten X_t und Y_t . Wie muß man t wählen, damit das Dreieck OX_tY_t einen minimalen Flächeninhalt besitzt?

Geben Sie diesen Inhalt an.

Aufgabe 3 5 Punkte

Eine zur y-Achse symmetrische Parabel 4. Ordnung geht durch den Punkt Y(0|2) und hat den Hochpunkt $H(-1|\frac{17}{8})$.

Bestimmen Sie die Gleichung dieser Parabel.